

Welcome to Zemo Partnership

Accelerating transport to zero emissions

The Auxiliary Transport Refrigeration Unit (AuxTRU) Project

Context and Background

Context - Regulatory Landscape

- Vehicle propulsion engines are regulated under EU emissions standards.
- Auxiliary engines are regulated under the Non-Road Mobile Machinery (NRMM) Directive.
- As auxTRUs are commonly attached to HGVs across the cold chain, these emissions are felt on the road in real terms.
- The total emissions auxTRUs contribute to the transport sector remains largely unknown.

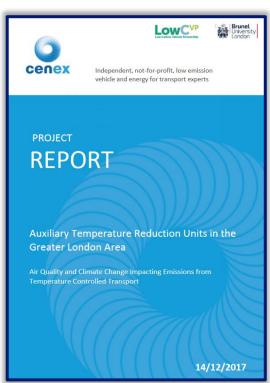
requiren	nents relating to gaseous	(EU) 2016/1628 of the European Parliament and of the Council of 14 and particulate pollutant emission limits and type-approval for inter mending Regulations (EU) No 1024/2012 and (EU) No 167/2013, and Directive 97/68/EC	rnal combustion engines
	(Off	icial Journal of the European Union L 252 of 16 September 2016)	
On page 9	9, Article 62 (regarding th	e Annex to Regulation (EU) No 1024/2012):	
gased	ous and particulate polluta	the European Parliament and of the Council of 14 September 2016 on rent emission limits and type-approval for internal combustion engines for ons (EU) No 1024/2012 and (EU) No 167/2013, and amending and repeat	non-road mobile
gaseo	ous and particulate polluta	the European Parliament and of the Council of 14 September 2016 on re nt emission limits and type-approval for internal combustion engines for ons (EU) No 1024/2012 and (EU) No 167/2013, and amending and repea	non-road mobile
(*1) OJL 25	2, 16.9.2016, p. 53 " ',		
(*2) OJL 25	2, 16.9.2016, p. 53 " '.		

Context - Greenhouse Gas Emissions & Air Pollutants

- Greenhouse Gases have a global impact and contribute to the climate crisis through the greenhouse gas effect.
- F (fluorinated) Gases have a Greenhouse effect and are not in scope for this project.
- Air pollutants have a far more localised effect and are linked to adverse human health impacts.

Examples of Greenhouse Gases	Examples of Air Pollutants	
Carbon Dioxide (CO ₂)	Carbon Monoxide (CO)	
Methane (CH ₄)	Sulphur Dioxide (SO ₂)	
Nitrous Oxide (N ₂ O)	Nitrogen Oxides (NO _x)	
Chlorofluorocarbons (CFCs)	Particulate Matter (PM ₁₀ , _{2.5} , ₁)	
Hydrofluorocarbons (HFCs)	Ozone (O ₃)	

Cenex/TfL Report - Published 2018


CENEX, Zemo (then LowCVP) and Brunel University were commissioned by Transport for London via

the LoCITY programme to conduct a desk-based study on auxTRUs in London.

5 Objectives:

- Study & report on the nature of temperature-controlled transport in London.
- ② Estimate the emissions from the temperature-controlled fleet (traction and auxiliary).
- Review the alternative technologies available.
- Review potential emission reductions when using best practices.
- Suggest high-level policy measures & areas for further research.

Amongst the study's findings was a call to **develop the emissions evidence base** from real-world emissions testing for auxTRUs...

Innovate UK Report - Published 2019

Innovate UK tasked LowCVP to:

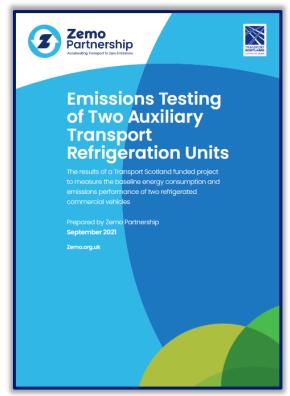
- Propose a robust, representative and cost-effective testing methodology from existing approaches.
- Trial and validate the methodology, through pilot testing of a single diesel auxTRU.
- Identify next steps for follow-up activity.

An initial test procedure was developed and validated via pilot testing.

Next step recommendations included **baseline testing of a wider range of existing TRU technologies**, develop procedures for multi-temp vehicles, and to **evaluate alternative TRU technologies** to assess emissions savings potential.

ZemoPartnership

Transport Scotland Report - Published 2021

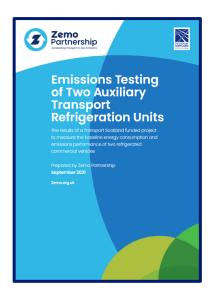

Zemo Partnership conducted research funded by Transport Scotland:

- Expand on the evidence base for diesel auxTRUs.
- Estimate real-world impacts on air quality.
- Inform Transport Scotland on the potential policy interventions for TRU emission control.

Two conventional diesel auxTRUs were tested under the programme of work:

- One fitted to a full-sized semitrailer
- One fitted to a (smaller) three-axle rigid HGV (26t GVW)

Both auxTRUs were from the same manufacturer.




Timeline

2018

2019

2021

2024
DfT auxTRU Project

Project Details

- The project started at the end of 2022 and is due to finish end 2024.
- The scope was widened beyond TRUs to cover other forms of auxiliary HGV engines (e.g. road sweepers), that are also regulated as NRMM.
- The project scope was expanded to include refrigerated vans in 2023.
- Project has been steered by an Expert Group made up of key industry stakeholders.

Work Package 1

AuxTRU Baseline Testing

Work Package 2

Market Review

Work Package 3

Extend Baseline Testing

Work Package 4

Evaluate Alternative Technologies

Work Packages 1 & 3 – AuxTRU Baseline Testing and Extending Baseline Testing

WP1: AuxTRU Baseline Testing

- The testing was to include auxTRUs certified as being compliant with NRMM Stage V, as NRMM Regulations started to impose limits on some auxTRU emissions from January 2019.
- The testing was also to include a greater range of manufacturers, as all three units tested to date were from the same supplier.

WP3: Extend Baseline Testing

The test procedures were to be developed to include multi-temperature operations, to ensure test protocols were more representative of in-service conditions.

ZemoPartnership

Testing Methodology

Layout of intermediate bulk containers (IBCs) and cardboard boxes

- 1. Empty trailer to be stabilised in test chamber at target ambient temperature.
- 2. Load vehicle/trailer with a mix of pre-conditioned water-filled IBCs & empty cardboard boxes.
- 3. Run the auxTRU to specified setpoint(s) (e.g. 2°C chilled, 20°C frozen)
- 4. Run the auxTRU in continuous mode (chilled) or start/stop mode (frozen and multi-temp) for 3 hours.
- Simulate delivery stop via door openings (e.g. HGVs = 30minute stop).
- 6. Close doors, auxTRU to pull down to set point (stage test ends).

Testing Methodology

- Six diesel auxTRUs tested from key market players, as provided by industry.
- For all units, testing generally involved chilled and frozen testing at one ambient temperature (15°C).
- One unit could only be tested in frozen mode, and an additional ambient test
 (5°C) was carried out for direct comparisons to the Transport Scotland work.
- One unit also underwent a series of multi-temperature tests (50:50 split) under a suite of ambient temperatures (5°C, 15°C, and 30°C).
- Note: The units were not tested against each other, but tested to gain a representative emissions baseline of the current cold chain sector.

Test Results – HGV Report

In comparison to a Euro VI compliant propulsion engine, a single auxTRU fitted to a Euro VI HGV would (in a city/urban environment, in periods of reasonably average ambient temperatures):

	Manufactured Pre-2019	Manufactured Post-2019
Fuel Consumption (litres):	1/9 th	1/10 th
Greenhouse Gas Emissions (CO ₂ e):	1/9 th	1/10 th
Nitrogen Oxides (NO _x):	2x	1.5x
Particle Mass (PM _{2.5}):	5x	3x
Particle Number (PN):	400x	300x

An increase of ambient temperature was also found to increase both fuel consumption and emission rates.

The results for multi-temp operations typically came in between those of the chilled and frozen mode tests

Work Package 2 - Market Review (HGV Report)

WP2: Market Review objectives:

- To gather comprehensive and nationally/regionally representative data on aux engine operations and duty cycles via a market survey.
- To establish findings to inform future test process development and provide overall fleet environmental impact estimates:

Estimate

40,000-55,000

235 million / year

~590 kilotonnes / year

~4.4 kilotonnes / year

~126 tonnes / year

~353 x 10²¹ / year*

Diesel auxTRU UK Fleet Size:

Fuel Consumption (litres):

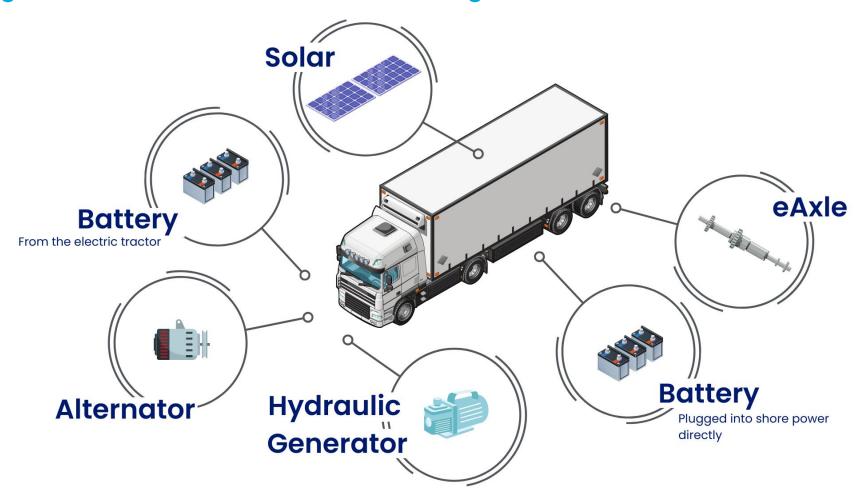
Greenhouse Gas Emissions (CO₂e):

Nitrogen Oxides (NO_x) :

Particle Mass $(PM_{2.5})$:

Particle Number (PN):

Work Package 4 – Evaluate Alternative Technologies


Testing and reviewing of alternative technologies currently underway.

In Scope **Secures Emission Reductions Zero Emission** Near Zero Emission **Commercially Available or Demo**

Out of Scope Non-Market Ready Technologies Hydrogen Fuel Cell **Eutectic Technologies** 80 **Low Carbon Renewable Fuels**

Work Package 4 – Evaluate Alternative Technologies

Vans

- © Completed emissions testing of two 3.5t Euro 6 standard diesel-fuelled refrigerated vans (Spring 2024), plus testing of one 4.25t BEV.
- Multi-temperature bodies, one PTO driven, one alternator driven.
- Developed test procedures to be representative of van operational characteristics.
- Report aims to characterise the environmental impacts of the full UK cold chain transport sector to date for HGVs and vans (excl. rigids and HGV TRUs from main propulsion).
- Also includes additional particulates' analysis of all HGV testing from DfT and Transport Scotland test programmes (8 TRUs), to further understand emissions from ultrafine particulates, a public health impact concern.

Next Steps

Deliverable	Detail	Timeline
Report	Van testing reporting and additional particulates' analysis from vehicles tested in DfT and Transport Scotland research.	October 2024
Project Completion	Project due to be completed with no further testing to take place.	November 2024
Report	Results from the testing of alternative HGV auxTRU technologies, and battery electric refrigerated van tests.	Winter 2024/25

Thank you

Any questions? Please get in touch

Emily Stevens

Project Manager

E: Emily.Stevens@Zemo.org.uk

T: 020 3832 6088

Brian Robinson

Technical Advisor

E: Brian.Robinson@Zemo.org.uk

Interested in joining the Partnership?

Please contact: Members@Zemo.org.uk

